FRP Seismic Strengthening of Columns in Frames

Dr Mihaela-Anca Ciupala (EU Marie Curie Research Fellow)

Dr Kypros Pilakoutas (Reader)

Professor Nicolae Taranu

Centre for Cement and Concrete
Department of Civil & Structural Engineering
The University of Sheffield, UK
Acknowledgments

• This research has been supported by a Marie Curie Fellowship of the European Community programme Human Potential under contract number HPMF-CT-2001-01279.

• The financial support of:
 – EU TMR Network ConFibreCrete
 – EU Ecoleader project
 – University of Sheffield
 – EU Craft project CurvedNFR

is also gratefully acknowledged.
Outline

- Introduction and Context of work
- Design procedure
- FRP confinement models
- Test frame
- Strengthening design example
- Conclusions
Context of work

- Centre of Cement and Concrete - The University of Sheffield, UK
- EU TMR Network ConFibreCrete
- EU Ecoleader research project

- Full scale 3D – two storey RC frames
- Tamaris Laboratory, CEA Saclay, France
Introduction

- Use of FRP in columns
- Confinement objective
- Difficulties:
 - most existing models for confined concrete and strengthening design guidelines are based on steel confinement
 - confinement of rectangular sections is not always dealt properly by models developed for circular sections
 - joint confinement is not always easy to achieve
Design procedure for plastic hinge confinement

\[
\mu_\phi = 1 + \frac{\mu_\Delta - 1}{3(L_p/L)(1 - 0.5L_p/L)}
\]

\[
L_p = 0.08L + 0.022f_yd_i \geq 0.044f_yd_i
\]
Conventional ductility

- Curvature in plastic hinge region in constant
- Plastic hinge region estimated roughly
- Yield penetration at plastic stage only
Ductility issues

- Curvature in plastic hinge region varies if bars are fully bonded due to high confinement
- Plastic hinge region depends on moments
- Yield penetration at yield and plastic stage

![Diagram showing moments and curvatures at yielding and ultimate response.](image-url)
Ductility equations

\[\mu_\phi = \frac{\mu_\Delta - (1 - 0.5 \lambda_{pl}) \cdot 0.9 \cdot (1 - 15\alpha)}{(1.3 \lambda_{pl} + 42\alpha\beta + 294\alpha^2 \beta^2) \cdot 0.9 \cdot (1 - 15\alpha)} \]

where

\[\lambda_{pl} = 1 - \frac{M_y}{M_{ult}} \]

\[\alpha = \frac{d \cdot f_y}{L \cdot 500} \]

\[\beta = \frac{f_{ult}}{f_y} \]
Design procedure for plastic hinge confinement

Target

\[\mu_{\Delta} \]

Required thickness of FRP
- Confinement model

\[\varepsilon_{cu} = \mu_{\phi} \cdot \phi_y \cdot x \]
Models for FRP-confined rectangular columns

• **Wang & Restrepo**
 \[f'_{cc} = \alpha_1 \alpha_2 f'_{co} \]

• **Spoelstra & Monti**
 \[\varepsilon_{cu} = \varepsilon_{cc} \left[\frac{E_{sec}(E_c - E_{sec,u})}{E_{sec,u}(E_c - E_{sec})} \right]^{\frac{E_{sec}}{E_c}} \]
 \[f'_{cu} = E_{sec,u} \varepsilon_{cu} \]

• **Lam & Teng**
 \[\varepsilon_{cc} / \varepsilon_{co} = 1.75 + m(f'_1 / f'_{co}) \]
 \[f'_{cc} / f'_{co} = 1 + 2f'_1 / f'_{co} \]

• **CEB-FIB Model Code 1990**
 \[\varepsilon_{c,85}^* = 0.0035 + 0.1 \cdot \alpha \omega_{wd} \]
Rectangular columns

- *Mander’s* model modified by several researchers
- Lateral stress is not calculated and effective stress not properly addressed
- Energy approach!
- *Spoelstra and Monti* calculate lateral stress
- *Model code ’90* model simple
RC frame

- 3 RC frames to be tested by the Ecoleader project

- Designed using old standards
- Strengthening with FRP after damaging on shaking table

Pushover analysis of the frame was carried out to determine the failure mechanism

![Diagram of RC frame with dimensions and design details]

Graph showing base shear vs. top displacement with markers indicating first yielding and collapse points.
Design procedure for plastic hinge confinement

Target

\[\mu_\Delta \]

\[\mu_\phi \]

Required

\[\varepsilon_{cu} = \mu_\phi \cdot \phi_y \cdot x \]

Required thickness of FRP
- Confinement model
Strengthening design example for columns

- Confinement of plastic hinge region
- Jacket thickness of 1, 2, 3 fibre sheets

Table 1. Fibre properties

<table>
<thead>
<tr>
<th>Fibre type</th>
<th>t_j (mm)</th>
<th>E_j (MPa)</th>
<th>f_{ju} (MPa)</th>
<th>\varepsilon_{ju} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFRP</td>
<td>0.117</td>
<td>240000</td>
<td>3900</td>
<td>1.55</td>
</tr>
<tr>
<td>GFRP</td>
<td>0.068</td>
<td>65000</td>
<td>1700</td>
<td>2.80</td>
</tr>
<tr>
<td>AFRP</td>
<td>0.280</td>
<td>120000</td>
<td>2000</td>
<td>1.55</td>
</tr>
</tbody>
</table>

- Strengthening objective \(\mu_\Delta = 8 \)
- Effective column length is 1.65 m and the expected \(L_p = 301 \) mm
- Required curvature ductility is \(\mu_\phi = 15 \) resulting in a required \(\varepsilon_{cu} = 0.01 \)
Axial stress for 1L of CFRP confinement

Rectangular

Circular

- Normalised axial stress (fcc/fco)
- Axial strain

- Models:
 - Wang & Resprepo
 - Spoelstra & Monti
 - Lam & Teng
 - Model Code 1990
 - Unconfined concrete

- Test
Normalised strength enhancement \((f'_c / f'_o) \)

<table>
<thead>
<tr>
<th></th>
<th>CFRP</th>
<th>GFRP</th>
<th>AFRP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1L</td>
<td>2L</td>
<td>3L</td>
</tr>
<tr>
<td>Wang & Restrepo</td>
<td>1.6</td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td>Spoelstra & Monti</td>
<td>1.6</td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td>Lam & Teng</td>
<td>1.2</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>fib Model code '90</td>
<td>1.1</td>
<td>1.3</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Ultimate strain ε_{cu} (%)

<table>
<thead>
<tr>
<th></th>
<th>CFRP</th>
<th></th>
<th>GFRP</th>
<th></th>
<th>AFRP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1L$</td>
<td>$2L$</td>
<td>$3L$</td>
<td>$1L$</td>
<td>$2L$</td>
<td>$3L$</td>
</tr>
<tr>
<td>Wang & Restrepo</td>
<td>0.8</td>
<td>1.3</td>
<td>1.6</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>Spoelstra & Monti</td>
<td>3.0</td>
<td>4.0</td>
<td>4.7</td>
<td>3.1</td>
<td>4.1</td>
<td>4.8</td>
</tr>
<tr>
<td>Lam & Teng</td>
<td>0.6</td>
<td>0.8</td>
<td>1.1</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>fib Model code ‘90</td>
<td>0.7</td>
<td>1.6</td>
<td>2.8</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Estimated displacement ductility μ_{Δ}

<table>
<thead>
<tr>
<th></th>
<th>CFRP</th>
<th>GFRP</th>
<th>AFRP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1L</td>
<td>2L</td>
<td>3L</td>
</tr>
<tr>
<td>Wang & Restrepo</td>
<td>6</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Spoelstra & Monti</td>
<td>28</td>
<td>38</td>
<td>45</td>
</tr>
<tr>
<td>Lam & Teng</td>
<td>4</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>fib Model code '90</td>
<td>5</td>
<td>14</td>
<td>26</td>
</tr>
</tbody>
</table>
Conclusions

- FRP strengthening differs in behaviour (and design) from steel jacketing
- FRP jacketing can enhance bond slip characteristics and lead to different plastic hinge lengths
- The main design parameter for confinement strengthening is maximum concrete axial strain
- Many models, but not enough accuracy
- Results of design dominated by the model inaccuracy
- More research to be done at the element and structural level